I. Introduction and Historical Background
 What is astronomy
 Ancient astronomy
 Geocentric model – Ptolemy
 Heliocentric model – Copernicus
 Tycho Brahe
 Kepler – Kepler’s 3 Laws
 Galileo – observations vs. geocentric model
 Newton – law of gravity, laws of motion
 Orbital motion – why?

II. The Night Sky
 The Earth in space – rotation on axis
 revolution about sun
 tilt of axis and origin of seasons
 Celestial Sphere
 ecliptic
 celestial equator
 celestial poles
 solstices, equinoxes
 Precession
 Solar vs. sidereal time
 orbit of moon, phases
 eclipses of Sun & Moon – Why?

III. Electromagnetic radiation, optics, and telescopes
 EM spectrum
 wavelength, frequency, velocity of light
 inverse square law
 Doppler effect
 Optics – formation of an image
 refraction & reflection

 Telescopes – optical and radio
 atmospheric windows

IV. Solar System
 membership
 formation
 extrasolar planets
 Terrestrial planets
Earth – plate tectonics
Moon – surface, ages, origin

atmospheres – origin, greenhouse effect

Mercury, Venus, Mars – surface condition
evidence for water

giant planets and their satellites
 Jupiter – atmosphere, composition
 4 Galilean satellites/terrestrial
 Saturn – rings, Roche limit, Titan
 Uranus & Neptune – atmosphere

 Pluto & trans-Neptunian objects/Kuiper Belt – dwarf planets
 No longer a major planet – why?

V. Interplanetary material
 Asteroids – asteroid belt
 Comets – composition, orbits, tail & nucleus
 Halley’s comet
 Meteors & meteor showers

 Role of impacts – K-T event
 Tunguska
 Comet Shoemaker – Levy 9