Observational Properties of Stars

Distance (Trig parallax)
Motions (radial velocity & Doppler effect) (Proper motion)
Radiation Laws
Brightness (apparent and absolute magnitude) distance modulus equation
Atomic Structure and atomic spectra
 Kirchoff’s laws – continuous spectrum, emission line spectrum, absorption line spectrum (see Ch. 3)
Spectra of stars – classification spectral type and luminosity class
Masses and sizes from binary stars
The HR Diagram – stellar populations

The Sun – example of a normal star

Solar/stellar atmosphere
 Photosphere
 Chromosphere
 Corona
 Solar wind
 Solar activity cycle
 Sunspots & sunspot cycle
 Prominences
 Flares
 Aurora & magnetic storm in Earth’s atmosphere

Solar/stellar interiors
 Nuclear fusion (proton-proton chain)
 Hydrostatic equilibrium
 Thermal equilibrium

Stellar Evolution

A. Interstellar Medium and star formation
 Gas and dust
 Dark nebulae – extinction & reddening of starlight
 Emission nebulae/HII regions
 Regions of star formation
 Protostar
 Premain sequence star
B. Low mass stars <2-3\(M_\odot \)
 Main sequence – energy source and structural change
 Post main sequence
 Red giant – energy source, structural change
 Planetary Nebula
 White dwarf – electron degeneracy, novae

C. Massive stars >5-10\(M_\odot \)
 Main sequence – red supergiant
 Energy sources and nucleosynthesis in core of star
 Supernova!
 Enrichment of IS medium
 SN1987A
 Crab Nebula
 Neutron stars and pulsars (neutron degeneracy)
 Black holes – event horizon=Schwarzchild radius
 Singularity
 Observational evidence – X-ray binaries

Variable Stars
 Pulsational Variable
 Period – Luminosity Relation
 RR Lyrae
 Cepheids

Observational Tests
 clusters – open and globular clusters
 Ages – main sequence turnoff
 Distances – main sequence fitting